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Diffusion-Annihilation and the 
Kinetics of the Ising Model in One Dimension 

Fereydoon Family 1 and Jacques G. Amar I 

The relationship between the one-dimensional kinetic Ising model at zero 
temperature and diffusion-annihilation in one dimension is studied. Explicit 
asymptotic results for the average domain size, average magnetization squared, 
and pair-correlation function are derived for the Ising model, for arbitrary 
initial magnetization. For the case of zero initial magnetization (m0 = 0), a num- 
ber of recent exact results for diffusion-annihilation with random initial condi- 
tions are obtained. However, for the case mo not equal to zero, the asymptotic 
behavior turns out to be different from diffusion-annihilation with random 
initial conditions and at a finite density. In addition, in contrast to the case of 
diffusion-annihilation, the domain-size distribution scaling function h(x) is 
found to depend nontrivially on the initial magnetization. The origin of these 
differences is clarified and the existence of nontrivial correlations in the initial 
wall distribution for finite initial magnetization is found to be responsible for 
these differences. Results of Monte Carlo simulations for the domain size 
distribution function for different initial magnetizations are also presented. 
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1. I N T R O D U C T I O N  

G e o r g e  Weiss  has  w o r k e d  on  so m a n y  different  p r o b l e m s  tha t  it is n o t  easy 

to give a p r e s e n t a t i o n  a b o u t  s o m e t h i n g  tha t  he has  n o t  s tud ied  before.  T h e  

one  p r o b l e m  tha t  we bel ieve G e o r g e  has  n o t  w o r k e d  in is the  Is ing mode l .  

But  the  p r o b l e m  is h o w  to c o n n e c t  it to the  p r o b l e m s  tha t  G e o r g e  is 

in te res ted  in. I t  t u rns  o u t  t ha t  the re  is a c lose c o n n e c t i o n  b e t w e e n  the  

k inet ics  of  the  o n e - d i m e n s i o n a l  I s ing  m o d e l  and  nonc las s i ca l  k ine t ics  

This paper is dedicated to George Weiss on the occasion of his 60th birthday. 
Department of Physics, Emorv 1 Tniversitv, Atlanta, Georgia 30322. 
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occurring in aggregation and annihilation of diffusing particles--a problem 
associated with random walks in which George has made significant 
contributions. 

The kinetics of diffusion-controlled annihilation in one dimension has 
been of interest for some time in the context of particle-antiparticle 
annihilation, (11 binary reactions in one dimension, (2~ and exciton fusion 
kinetics (3) in low-dimensional media. While the exponent (t -1/2) charac- 
terizing the decay of the particle density in one dimension is well known (1'2) 
and an asymptotic solution has been given for an initial Poisson distribu- 
tion in the continuum case, (2) only recently (for certain initial conditions) 
have explicit solutions been given for diffusion-annihilation on a lattice. (4'5) 
Because of the equivalence between domain walls in the Ising model and 
particles in diffusion-annihilation, it has been assumed (5) that there exists 
an exact duality between the one-dimensional Ising model at zero 
temperature and diffusion-annihilation. In particular, Rficz has used this 
analogy to study the kinetics of diffusion-annihilation in the presence of 
sources. (6) However, until recently, (7) no detailed comparison between the 
kinetics of the Ising model and diffusion-annihilation in one dimension had 
been made. 

In this paper, we derive exact asymptotic expressions for the average 
domain size, wall density, and pair-correlation function as a function of the 
initial magnetization mo of the Ising model at zero temperature. Our results 
are then analyzed in terms of the relationship between the Ising model 
and diffusion-annihilation. If we interpret the presence of a domain wall 
(up spin followed by a down spin or vice versa) in the Ising model as 
equivalent to a particle in diffusion-annihilation, then our results for the 
wall density turn out to be identical to known results (4'5) for the particle 
density in diffusion-annihilation for the case mo = 0. However, somewhat 
surprisingly, for general values of mo they appear to differ. In particular, for 
an initial random distribution with m 0 r 0, we find that the asymptotic 
coefficient of t-1/2 for the wall (particle) density depends on mo, in contrast 
to what is expected for diffusion-annihilation. 

Monte Carlo simulation results for the domain size distribution func- 
tion as a function of mo are also presented. Again, there is agreement for 
the case mo=0 ,  while for mova0 the domain size distribution function 
depends on mo, in contrast to what is expected for the case of diffusion- 
annihilation. In addition, we study the small-x behavior of the domain size 
(interparticle) distribution scaling function h(x) as a function of mo and 
show, for both the case of the Ising model and diffusion-annihilation, that 
the exponent ~ is equal to 1. 

Finally, we extend our previous work (7) and discuss more fully the 
connection between the Ising model and diffusion-annihilation. In par- 
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ticular, we explain why for m0 r 0, our results appear to be different from 
the known results for diffusion-annihilation. The reason turns out to be 
that the asymptotic behavior in diffusion-annihilation is sensitive to subtle 
correlations in the initial conditions, which occur for m or  We also 
compare our results with a recent formula derived by Balding et al. ~8~ and 
thus show explicitly that the duality between the zero-temperature Ising 
model and diffusion-annihilation is exact. 

The organization of this paper is as follows. In Section 2, we review 
the general solution of the kinetic Ising model. Our analytical results at 
zero temperature are presented in Section 3, and compared with results for 
diffusion-annihilation. In Section 4, Monte Carlo simulation results for the 
domain size are compared with the asymptotic predictions and we also 
study the scaling of the domain size distribution and compare it with 
results for diffusion-annihilation. In Section 5, we discuss the effects of 
correlations in the initial state on the asymptotic behavior of the wall/par- 
ticle density. Finally, in Section 6 we discuss in more detail the relation 
between diffusion-annihilation and the Ising model and give a summary of 
our results. 

2. ISING D Y N A M I C S  IN ONE D IMENSION 

The one-dimensional kinetic Ising model consists of a lattice of spins 
s~ = _+ 1, which interact ferromagnetically with their nearest neighbors. The 
Hamiltonian for this model (for a chain of length N) is 

N 
H =  - J  ~ sisi+l (1) 

i= l  

The master equation describing the time evolution of the spin configura- 
tions is 

d p ( s , ,  $2,... , SN, t ) /d t  = - 2 w(si )  P (S l '  $2'"" si ..... SN, t) 
i 

+ Y~ w ( - s , )  p(s, ,  s2 ..... - s , . . . ,  sN, t) (2) 
i 

where p(sl, s2 ..... sx, t) is the probability of configuration {s 1, $ 2 , . . .  , SN} at 
time t and w(si)--the 'probability per unit time that a given spin si will 
change sign--satisfies the Maxwell-Boltzmann distribution: 

W(Si ) /W(- -S i )  = [1 - - ~ S i ( s i + l  1 -~Si 1 ) ] / [  1 -~- �89 "~- S i -  1)] (3) 

822/65/5-6-26 
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where ~ = tanh(2J/kB T). Assuming w(si) of the form 

w(si) -=- �89 - -  l ~ s i ( s i +  1 ~ - s  i 1)] (4) 

Glauber (9~ studied the dynamics of the Ising model and was able to write 
an equation for the expectation value of the spin-spin pair-correlation 
function G(k, t )=(So(t )sk( t ) )  which, when averaged translationally, 
becomes for k > 0 

dG(k, t) 
-2G(k,  t) + y [ G ( k -  1, t) + G(k + 1, t)] (5) 

dt 

The exact solution to this equation has been given by Glauber (9) as 

G(k , t )=t lk+e  -2' ~ EG(m,O)-q'~][Ik m(27t)--Ik+m(27t)] ( 6 )  
m = l  

where t/= tanh(J/kB T) and In(x) is the modified Bessel function of the first 
kind. For large x, I~(x) has the asymptotic expansion (1~ 

ex{ t In(x)=(27ZX)1/2 lq - ,= l  ~ (--1)Sl~'~=l[#--(2J-- 1 ) 2 I s ]  (8x)" (7) 

where/~ = 4n 2. For T> 0, 7 is less than 1 and G(k, t) decays exponentially 
to its equilibrium value t/~. 

The equation for the expectation value of each spin (sk(t)) has also 
been given by Glauber (9) as follows: 

d(sk(t) ) 1 
(s~(t)) +-z ~[(s~_l(t)) + (sk+ ~(t))] (8) 

dt Z 

The solution of this equation is 

(sk(t)) = e - t  Z (Sm(O)) Ik_m(Tt) (9) 
m ~  - - c o  

If we define m(t) = (l/N) S~N g= l(Sk(t)) and sum Eq. (8) over k (subscripts 
are modulo N), Eq. (8) becomes 

din(t) 
(1 -7)re( t )  (10) 

dt 

or m(t)=e -(1 ~)'rn o. For T=0,  7=  1, we get the somewhat surprising 
result: re(t) = mo = constant. 
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3. R E L A T I O N S H I P  T O  D I F F U S I O N - A N N I H I L A T I O N  

At T = 0, 7 = r/= 1, and Eq. (4) becomes 

w(s,) = 1 - (1/2)[6(si, si 2) ~-6(si, si+ i)] (11) 

Equation (11) implies that a spin which has one nearest neighbor of the 
same sign and another of the opposite sign (i.e., a domain wall) has a 
probability of t/2 of changing sign (domain wall diffusion), while a spin 
whose nearest neighbors are both of the opposite sign (two domain walls) 
will change sign with probability one, eliminating both walls (wall-wall 
annihilation). Thus, at zero temperature the Ising problem appears to be 
equivalent to the problem of annihilation-diffusion of particles/walls. 

Similarly, at T = 0 ,  Eq. (6) becomes 

G(k, t )=  1 +e  2, ~ [G(m, 0 ) -  1][Ik_m(2t)--Ik+m(2t)]  
r n =  t 

(12) 

For a random initial state with magnetization ( s )=mo,  and G ( k ,  0)= m 2 
for k r O, this equation reduces to 

G ( k , t ) = l - e  -2' ~ (1-- m~)[lk_m(2t) -- Ik+,n(2t)] 
m = l  

(13) 

Keeping in mind that I , ,(x)= I n(x) for n integer, x > 0, this infinite series 
can be rearranged to obtain 

G(1, t ) = l - e  2 t (1-m~)[ Io(2 t )+I i (2 t ) ]  

G ( k , t ) =  l - e  z t (1 -m~)Vlo(2 t )+I~(2 t )+2  
k 

(14a) 

~-1 )] 
Im(2t for k >  1 

r n ~ l  

(14b) 

Thus, the average wall density n( t )=  [1 - G ( 1 ,  t)]/2, which is equivalent to 
the particle density in the diffusion-annihilation problem, is 

n ( t )  = 1 - m 2 2 o e-Z,[io(2t) + I~(2t)] (15) 

where no = n(0) = (1 - m~)/2. 
For an initial random configuration with mo = 0, for which n o = 1/2, 

Eq. (15) is identical to the following expression, which was recently 
derived (5) for one-dimensional diffusion-annihilation on a lattice for the 
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time-dependent concentration of particles c(t) with initial concentration 1/2 
and with an initial random distribution: 

cit ) = (1/2) exp( -4Dt) [ I0(4Dt  ) + Ii(4Dt)] (16) 

if one assumes D = 1/2. 2 
Substituting the asymptotic expansion (7) into Eq. (15) yields 

n( t )=  1 -m____~ t 1/2+0( t 3/2) (17) 
2 

Thus, the average domain size L( t )=  1/n(t) varies asymptotically as 

L(t) = 2 ~ n  11/2 (18) 
1 --m2o 

Equations (17) and (18) hold in general, if one assumes an initial con- 
figuration such that G(k, O) = m~ + ~(k) for k r 0 where ~(k) ~ 0 as k ~ oo. 
Thus, the asymptotic expression for domain size depends only on the initial 

2 T h i s  is c l ea r ly  r e a s o n a b l e ,  s ince  the  p r o b a b i l i t y  p e r  un i t  t i m e  fo r  a n  i s o l a t e d  d o m a i n  wa l l  to  

" d i f f u s e "  a d i s t a n c e  o f  o n e  l a t t i c e  s p a c i n g  is 1/2, a c c o r d i n g  to  Eq .  (4).  

200 ' ' ' ' I ' ' ' ' I ' ' ' ' 1  ' ' ' ' I ' ' '  ' 

- 150 

i00 

0 100 200 300 400 500 

MCS 

Fig. i. Comparison of asymptotic predictions for domain size (solid lines) with simulation 

r e s u l t s  ( s y m b o l s ) .  T o p  a n d  m i d d l e  c u r v e s  c o r r e s p o n d  to a v e r a g e  d o m a i n  s ize  L(t) w i t h  

m o = 0 .75 a n d  m o = 0, r e s p e c t i v e l y .  B o t t o m  c u r v e  c o r r e s p o n d s  to  a n o t h e r  m e a s u r e  o f  d o m a i n  

s i z e - - t h e  m e a n  s q u a r e  m a g n e t i z a t i o n  R M ( t ) - - - a v e r a g e d  o v e r  m a n y  r u n s  w i t h  < m 0 ) =  0. 
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magnetization mo (assuming no other long-range order at t = 0) and not on 
the short-range order of the initial spin distribution. 

For  an initial nonrandom, antiferromagnetic configuration such that 
G(k, 0 ) =  ( - 1 )  k (corresponding to a full lattice of walls), Eq. (12) implies 

n(t) = e x p ( - 2 0  Io(2t) (19) 

This result agrees with the exact result c(t)=exp(-4Dt)Io(4Dt) derived 
by Lushnikov (4) for diffusion-annihilation with an initially full lattice, if one 
again assumes D = 1/2. Thus, for the case m o= 0, we recover the two 
known (4'5) exact results for diffusion-annihilation on a lattice. 

Using Eq. (14), we have also calculated the asymptotic scaling form of 
the pair correlation function G(k, t) in the limit t, k ~ oe with k/x/t finite. 
If we insert the asymptotic expansion (7) into (14b), keeping in mind that 

k--1 m2n _= k2n + • r n  = 1 1/(2n + 1 ) + O(k2n), we obtain 

G(k, t ) =  1 1 - m  o ( - 1 ) ~ k  2"+1 ~'/I n=O ~ (2r/~i~x!-~f-~n-+l/2-t-O(t-1/2) (20) 

In terms of the scaled variable z = k/~/t, this may be rewritten as 

1--mo 2 ~ ( - -1)  "z2"+1 
G(k, t)= g(z)= l o=o  (2n+1) (21) 

On inspection this may be seen to be equal to 

g(z) = 1 - (1 - rno) err(z/2) = (1 - mo 2) erfc(z/2) + m o (22) 

where eft(z) = (2/~/~) S~ du e-"2. We note that at T =  0 (7 = 1), Eq. (5) for 
G(k, t) is the discrete version of a one-dimensional diffusion equation 
c~G(x, t)/c?t=c~2G(x, t)/Ox 2. The exact solution of this equation, with 
boundary conditions G(0, t) = 1 and G(x, O) = m~ for x ~ 0, is 

G(x, t ) =  1 - (1 - m  2) erf(x/2 x / t ) =  1 - (1 - m o  2) erf(z/2) 

if one identifies x /~ t  as z. Thus, the asymptotic result for g(z) is the same 
as in the continuum approximation. We note, as before, that Eq. (22) holds 
for a n  arbitrary initial configuration with G(k, 0)=too2+ ~(k) with ~(k) 
going to 0 as k--* oe. 

4. M O N T E  CARLO S I M U L A T I O N S  

In order to test the convergence to asymptotic behavior, we have 
conducted Monte Carlo simulations (on a lattice of size N =  128,000) for 
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several  values of mo with init ial  r a n d o m  configurat ions .  We found that  our  
results (7] for L(t) versus t ime ( M o n t e  Car lo  steps) from M o n t e  Car lo  
s imula t ions  with m o = 0 and  m 0 = 0.75 were in excellent  agreement  with 
(17) after only  a few M o n t e  Car lo  steps (MCS) .  Similar  g o o d  agreement  
with Eq. (22) for the pa i r -co r re la t ion  funct ion g(z) was also found after 
only  a few MCS.  

W e  have also s tudied  the a sympto t i c  d i s t r ibu t ion  of d o m a i n  sizes 
N(k, t), where  N(k, t) is the densi ty  of  doma ins  of size k at  t ime t. This  is 
equivalent  to the in terpar t ic le  d i s t r ibu t ion  funct ion in the case of  diffusion- 
annihi la t ion .  If  one defines p(k, t) = N(k, t)/n(t) as the fract ion of  doma ins  
of size k at  t ime t, and  assumes scal ing with the average d o m a i n  size L(t), 
one ob ta ins  

h(x) = p(k, t) L(t) (23) 

where x = k/L(t), L( t )= [2~1/2/(1 - m 2 ) ]  t 1/2, and  h(x) is a scal ing funct ion 

satisfying ~ dx h(x) = 1. F igure  2 shows a p lo t  of the scal ing funct ion h(x), 
ob ta ined  f rom M o n t e  Car lo  s imulat ions ,  for two different values of the 
ini t ial  magne t i za t ion  mo. W e  note  tha t  the scal ing funct ion h(x) for mo = 0 
has a peak  near  x = 1/2 ra ther  than  at  x = 1. The scal ing funct ion for 
m0 = 0.75 has a peak  which is h igher  and  na r rower  than  tha t  for mo = 0 

i i , , I I i , i [ i i i I I i ~ L i 

12 

1.0 

0.8 

h(x) 
0 . 6  

0 . 4  

0 . 2  

, , ,  I . . . .  i . . . .  w , - ,  , , - r - - ~ ,  - ~ - : " : ~  " 
0 . 0  

.0 0.5 1.0 1.5 2.0 

X 

Fig. 2. Domain size distribution scaling function h(x) for mo = 0 (lower solid curves) and 
m o = 0.75 (upper solid curves) from Monte Carlo simulations. Data shown are for increments 
of 20 MCS up to 100 MCS. (The scaling function for m 0 ~ 0.75 has been reduced by a factor 
of 2/3 for clarity.) Squares show data from simulations of diffusion-annihilation. (11) 
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and its location is at a smaller value of x. Thus, the scaling function h(x) 
is seen to depend nontrivially on the initial magnet izat ion m0, unlike what  
is expected in the case of  diffusion-annihilation. We note, however, that  for 
mo = 0, our  numerical  results for the domain  distribution scaling function 
for the Ising model  are almost  identical to numerical results obtained by 
Doer ing and ben-Avraham (1~) for the interparticle distribution scaling 
function for one-dimensional  diffusion-annihilation. 

We have also studied the small-x behavior  of h(x) as a function of  mo. 
If  one assumes that  h ( x ) ~  x ~ as x goes to 0, then one expects N(k, t) 
p(k, t) t -~ /2~ t  (~+~/2) Analysis of  data  for late times indicates that 
N(k, t) ~ t -3/2, i.e., ~ = 1. We note that  this same behavior  (~ = 1 ) has been 
seen in simulations of coagulat ion in one dimension (~2~ (for the behavior  
of the number  of clusters of size k) and has been obtained in a recent 
paper  ( ' )  on the interparticle distribution function for the one-dimensional  
irreversible one-species coagulat ion model  A + A ~ A. 

We now derive the small-x behavior  of h(x) as a function of m o and 
the exponent  r as follows. If we define the wall density at site i as 

wi= (1/2 ) ( s i -  s~+ ~) (24) 

then w~= 1 corresponds to a + 1 -  wall, w ~ = - 1  to a - I +  wall, and 
w~=0  to no wall. We may  then in general calculate the (signed) wall 
correlat ion function 3 

(WoWx) = (1/4)[2G(x, t ) -  G ( x -  1, t ) -  G(x + 1, t ) ]  (25) 

In particular, 

N(1, t ) =  - (WoWx) = - ( 1 / 4 ) [ 2 G ( 1 ,  t ) - G ( 2 ,  t ) -  l ]  

Substituting the asymptot ic  form for G(k, t), we obtain 

1 -m~ 
N(1, t) = - -  t 3/2 + O(t ~/2) (26) 

for the density of domains  of size one. Thus, p(1, t ) =  N(1, t)/n(t)= 1/(4t) 
and h(x) ~ ~x/(1 - - m ~ )  2 as X goes to zero. G o o d  agreement with this form 
in the limit of small x is found from our  simulations for both  values of mo 
(see Fig. 2). Thus, we have shown explicitly that  z = 1, and for small x, 
found the dependence of h(x) on mo. 

3 We note that we may, in general, write the following expression for the domain distribution 
function: N(k, t) = ( -  1) k (w 0 H)_ ~1(1 - wi) w~). Evaluation of this expression requires the 
evaluation of spin-correlation functions of orders 1 to k + 1. 
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5. EFFECT OF I N I T I A L  C O R R E L A T I O N S  

We note that, in' contrast to the case of one-dimensional diffusion- 
annihilation with an initially random distribution of particles, for which the 
asymptotic form (1'21 for the density of particles n(t)= (8~Dt) -m is inde- 
pendent of the initial density of particles/walls, Eq. (17) depends on the 
initial wall density (magnetization). However, as already pointed out, for 
the case rn o = 0 (no = 1/2, D = 1/2), we recovered two recent results (4'5) for 
diffusion-annihilation on a lattice. Similarly, our numerical results for the 
domain size distribution scaling function h(x) were in excellent agreement 
for m o = 0  with simulation results (m for the interparticle distribution 
scaling function in the case of diffusion-annihilation. 

We now address the question of the apparent discrepancy with the 
known results for diffusion-annihilation for mo ~0 .  Previously, we had 
thought that this discrepancy might be due to a subtle difference in the 
dynamics of annihilation in the two models. It turns out, however, that it 
is not due to any lack of duality between the two models, but rather to 
subtle correlations in the initial distribution of walls at t = 0 which occur 
for rno r 0. 

In particular, if we consider an initial random Ising spin configuration 
with magnetization m0, the probability for a spin to be "up" is 
p = (1 + too)/2, while the probability for a spin to be "down" is 1 - p  = 
( i - m 0 ) / 2 .  The probability of a wall then is Pw=2p(1-p) (=1 /2  for 
m o = 0). Thus, for an initial random spin configuration with rn o = 0, which 
corresponds to an initial wall density of 1/2, the corresponding initial dis- 
tribution of walls/particles is also random and it is not surprising that exact 
agreement is found with the known asymptotic results for diffusion- 
annihilation. 

However, for rn 0 ~ 0, the initial distribution of walls turns out to be 
correlated. This may be seen by considering the probability P2 of two con- 
secutive walls in the initial configuration. If the walls are randomly dis- 
tributed with probability Pw = 2p(1 - p) (as above), then P2 = 4p2( 1 - p)2. 
However, for a spin system with initial magnetization m o = 2 p -  1, the 
probability P~ of two consecutive walls equals the probability of either a 
( - + - )  or a ( + - + )  configuration, so P'2=p2(1-p)+(1-p)2p= 
p(1 - p ) .  Except for the case rno = 0 (p = 1/2), P ;  is not equal to P2, and 
thus for rn o r 0, the wall distributions are correlated in the initial configura- 
tion. These initial correlations are long-ranged enough so that both the 
asymptotic scaling function h(x) and the asymptotic coefficient of t 1/2 
depend on m o. Thus, the asymptotic behavior of the diffusion-annihilation 
problem in one dimension turns out to be remarkably sensitive to the 
initial conditions. 
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6. CONCLUSION 

We have already noted the equivalence between a domain wall in the 
Ising model at zero temperature and a particle in diffusion-annihilation. 
The existence of an exact duality between the zero-temperature Ising model 
and diffusion-annihilation may be shown by comparing our results with 
recent results obtained by Balding, Clifford, and Green (BCG) (s) for 
diffusion-annihilation with a continuous-time random walk on a lattice. 
For diffusion-annihilation, BCG obtained [ D =  1/2, see Eqs. (1) and (2) 
of ref. 8 ] 

r/(t)= ~ e 2tOm(O)[lm_l(2t)--lm+l(2t)] (27) 
m=l 

where n(t) is the particle density at time t, and Om(0) is the probability 
that initially an interval of m sites contains an odd number of particles. 
We note that for an initially random distribution of particles with 
density p, one has ~8) Om(O)=[1--(l--2p)m]/2, SO that, rearranging 
Eq.(27) and inserting the asymptotic expansion (7), one obtains 
n(t) = (4~t)-1/2 + 0(t-3/2), independent of p, as expected. 

Recalling that n( t )=  [ l - G ( 1 ,  0]/2,  and noting that for the Ising 
model, Om(t)= [1 --G(m, t)]/2 [where Om(t) refers to an odd number of 
domain walls], we see that Eq. (12) is equivalent to Eq. (27) above, further 
supporting the exact duality between the two models. More generally, 
Eq. (12) also implies 

Ok(t)= ~ e-ZtOm(O)[Ik_m(2t)--Ik+,~(2t)] (28) 
m=l 

which is, as far as we know, a new result. This result may be useful in 
studying the interparticle distribution function h(x) for diffusion-annihila- 
tion as a function of initial conditions. 

In conclusion, we have derived exact results for the zero-temperature, 
one-dimensional Ising model, which we have used to study the relationship 
between the kinetics of the Ising model and diffusion-annihilation. In par- 
ticular, a number of recently obtained exact results for diffusion-annihila- 
tion were recovered. We have also conducted Monte Carlo simulations and 
found good agreement at early time with our asymptotic results. In addi- 
tion, we have clarified the connection between the zero-temperature Ising 
model and diffusion-annihilation by showing explicitly an exact equivalence 
between the two models. Finally, we have pointed out the important role 
of initial correlations in determining the asymptotic dynamics and form of 
the asymptotic distribution functions. 
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